investigation of malting process using artificial neural network
نویسندگان
چکیده
malting is a complex biotechnological process that includes steeping; germination and drying of cereal grains under controlled conditions of temperature and humidity. in this research malting process parameters were predict by modular neural network with different activation function included, logsig-logsig, tanh-tanh, logsigtanh, logsig-identity and tanh-identity. steeping time (x1) and germination time (x2) were used as input parameters and hot water extract (y1), malting yield (y2) and enzyme activity (β-gluconase) (y3) were selected as output parameters. the results showed that using perceptron neural network with tanh-identity activation function had the best result among all of activation functions to predict effective parameters of malting process. as well, this network was able to predict hot water extract, malting yield and enzyme activity (β - gluconase) with r2 value of 1, 0.984 and 0.995, respectively.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Distillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملDetection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network
Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...
متن کاملUsing Artificial Neural Network to Destroy the Process of Traffic Accident Victims in Yazd Province
Background: Road accidents are among the most important causes of death and severe personal and financial injuries. Also, its profound social, cultural, and economic effects threaten human societies. This study aimed to estimate the trend of traffic accident victims in Yazd Province, Iran, to predict the number of traffic accident victims in this province. Materials and Methods: Based on traff...
متن کاملPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
متن کاملInvestigation of Asphaltene Precipitation Using Response Surface Methodology Combined with Artificial Neural Network
The precipitation of asphaltene, one of the components of oil, in reservoirs, transfer lines, and equipment causes many problems. Accordingly, researchers are prompted to determine the factors affecting asphaltene precipitation and methods of avoiding its formation. Predicting precipitation and examining the simultaneous effect of operational variables on asphaltene precipitation are difficult ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
پژوهش های علوم و صنایع غذایی ایرانجلد ۹، شماره ۳، صفحات ۰-۰
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023